c05 — Roots of One or More Transcendental Equations c05zcc

nag_check deriv_1 (c05zcc)

1. Purpose

nag_check_deriv_1 (c05zcc) checks that a user-supplied C function for evaluating a vector of functions
and the matrix of their first derivatives produces derivative values which are consistent with the
function values calculated.

2. Specification

#include <nag.h>
#include <nagc05.h>

void nag_check_deriv_1(Integer n, double x[], double fvec[], double fjac[],
Integer tdfjac,
void (*f) (Integer n, double x[],double fvec[],
double fjac[], Integer tdfjac, Integer *userflag),
Nag_User *comm, NagError *fail)

3. Description

nag_check_deriv_1 checks the derivatives calculated by user-supplied C functions, e.g. functions of
the form required for nag_zero_nonlin_eqns_deriv_1 (cO5ubc). As well as the C function to be checked

f, the user must supply a point © = (2, Z, . .. ,xn)T at which the check will be made.

nag_check_deriv_1 first calls f to evaluate both the f;(x) and their first derivatives, and uses these
to calculate the sum of squares

F(z) = Z [fz(x)]27

=1
and its first derivatives

_OF

gjfa—xj , forj=1,2,...,n.

x

The components of g along two orthogonal directions (defined by unit vectors p; and p,, say) are
then calculated; these will be g7p; and g7p, respectively. The same components are also estimated
by finite differences, giving quantities

F(z + hp;,) — F(x)
h

v, = , k=1,2

where h is a small positive scalar. If the relative difference between v; and g%p; or between v, and
g7'p, is judged too large, an error indicator is set.

4. Parameters

n
Input: the number n of variables, z;, for use with nag_zerononlin_eqns_deriv_1 (cO5ubc).
Constraint: n > 0.

X[n]

Input: x[j—1], for j = 1,2,...,n must be set to the co-ordinates of a suitable point at which
to check the derivatives calculated by f. ‘Obvious’ settings, such as 0 or 1, should not be used
since, at such particular points, incorrect terms may take correct values (particularly zero),
so that errors can go undetected. For a similar reason, it is preferable that no two elements
of x should have the same value.

fvec|n]

Output: unless userflag is set negative when evaluating f; at the point given in x, fvec[i — 1]
contains the value of f; at the point given by the user in x, for i =1,2,...,n.

[NP3275/5/pdf] 3.c05zcc. 1

nag_check _deriv_1 NAG C Library Manual

fjac[n][tdfjac]
Output: unless userflag is set negative when evaluating the Jacobian at the point given in x,
fjac[i — 1][j — 1] contains the value of the first derivative 9f;/0x; at the point given in x, as
calculated by f, fori =1,2,...,n;7=1,2,...,n.

tdfjac

Input: the last dimension of array fjac as declared in the function from which
nag-_check_deriv_1 is called.
Constraint: tdfjac > n.

f must calculate the values of the functions at a point x or return the Jacobian at x.
nagzero_nonlin_eqns_deriv_1 (cO5ubc) gives the user the option of resetting a parameter to
terminate immediately. nag_check_deriv_1 will also terminate immediately, without finishing
the checking process, if the parameter in question is reset.

The specification of f is:

void f(Integer n, double x[], double fvec[], double fjac[],

Integer tdfjac, Integer *userflag)

n
Input: the number of equations, n

X[n]
Input: the components of the point = at which the functions or the Jacobian
must be evaluated.

fvecn]

Output: if userflag = 1 on entry, fvec must contain the function values f;(x)
(unless userflag is set to a negative value by f).
If userflag = 2 on entry, fvec must not be changed.

fac[nxtdfjac]
Output: if userflag = 2 on entry, fjac[(i — 1)«tdfjac+j — 1] must contain the value
of f;/0x; at the point x, for i = 1,2,...,n; j = 1,2,...,n (unless userflag is
set to a negative value by f).
If userflag = 1 on entry, fjac must not be changed.

tdfjac
Input: the last dimension of array fjac as declared in the function from which
nag_check_deriv_1 is called.

userflag
Input: userflag = 1 or 2.
If userflag = 1, fvec is to be updated.
If userflag = 2, fjac is to be updated.

Output: in general, userflag should not be reset by f. If, however, the user wishes
to terminate execution (perhaps because some illegal point x has been reached),
then userflag should be set to a negative integer. This value will be returned
through fail.errnum.

comm

Input/Output: pointer to a structure of type Nag_User with the following member:

p - Pointer

fail

Input/Output: the pointer p, of type Pointer, allows the user to communicate
information to and from the user-defined function f(). An object of the required type
should be declared by the user, e.g. a structure, and its address assigned to the pointer
p by means of a cast to Pointer in the calling program, e.g. comm.p = (Pointer)&s.
The type pointer will be void * with a C compiler that defines void * and char *
otherwise.

The NAG error parameter, see the Essential Introduction to the NAG C Library.

3.c05zcc.2

[NP3275/5/pdf]

c05 — Roots of One or More Transcendental Equations c05zcc

6.1.

8.1.

Error Indications and Warnings

NE_INT_ARG_LE
On entry, n must not be less or equal to 0: n = (value).

NE_2 INT_ARG_LT
On entry tdfjac = (value) while n = (value). These parameters must satisfy tdfjac > n.

NE_ALLOC_FAIL
Memory allocation failed.

NE_DERIV_ERRORS
Large errors were found in the derivatives of the objective function.

The user should check carefully the derivation and programming of expressions for the
of,/ Oz, because it is very unlikely that f is calculating them correctly.

NE_USER_STOP
User requested termination, user flag value = (value).

Further Comments

Before using nag_check_deriv_1 to check the calculation of the first derivatives, the user should be
confident that f is evaluating the functions correctly.

Accuracy

fail.code is set to NE_.DERIV_ERRORS if
2 2
(g =9 D) = hx((g"pp) +1)

for k =1 or 2. (See Section 3 for definitions of the quantities involved.) The scalar h is set equal
to /€, where ¢ is the machine precision.

See Also

nag_zero_nonlin_eqns_deriv_1 (c05ubc)

Example

This example checks the Jacobian matrix for the problem solved in the example program for
nag_zero_nonlin_eqns_deriv_1 (c05ubc).

Program Text

/* nag_check_deriv_1(c05zcc) Example Program

*

* Copyright 1998 Numerical Algorithms Group.
*

* Mark 5, 1998.

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc05.h>

#ifdef NAG_PROTO
static void f(Integer n, double xc[], double fvecc[],
double fjacc[], Integer tdj, Integer *userflag, Nag_User *comm);
#else
static void £();
#endif

main()

{
#define NMAX 5

[NP3275/5/pdf] 3.c05zcc.3

nag_check _deriv_1 NAG C Library Manual

double fjac[NMAX] [NMAX], fvec[NMAX], x[NMAX];
Integer i, j, n, tdfjac;

static NagError fail;

Nag_User comm;

fail.print = TRUE;

Vprintf ("c05zcc Example Program Results\n");
n = 3;

tdfjac = NMAX;

/* Set up an arbitrary point at which to check the 1st derivatives */
x[0] = 9.2e-01;
x[1] = 1.3e-01;
x[2] = 5.4e-01;
Vprintf ("The test point is ");
for (j=0; j<m; ++j)
Vprintf ("%13.3e", x[j1);
Vprintf ("\n\n");
c05zcc(n, x, fvec, (double *)fjac, tdfjac, f, &comm, &fail);
if (fail.code !'= NE_NOERROR) exit(EXIT_FAILURE);
Vprintf ("1st derivatives are consistent with residual values.\n\n");
Vprintf ("At the test point, f() gives\n\n");

Vprintf (" Residuals 1st derivatives\n\n");
for (i=0; i<n; ++i)
{

Vprintf ("%13.3e", fvec[il);
for (j=0; j<n; ++j)
Vprintf ("%13.3e", fjaclil [j1);
Vprintf ("\n");
}
exit (EXIT_SUCCESS) ;

}
#ifdef NAG_PROTO
static void f(Integer n, double x[], double fvec[], double fjacl],
Integer tdfjac, Integer *userflag, Nag_User *comm)
#else
static void f(n, x, fvec, fjac, tdfjac, userflag, comm)
Integer n;
double x[], fvecll, fjacll;
Integer tdfjac;
Integer *userflag;
Nag_User *comm;
#endif
{
#define FJAC(I,J) fjac[((I))*tdfjac+(J)]
Integer j, k;
if (*userflag !'= 2)
{
/* Calculate the function values */
for (k=0; k<n; k++)
{
fveclk] = (3.0-x[k]*2.0) * x[k] + 1.0;
if (k>0) fveclk] -= x[k-1];
if (k<n-1) fvec[k] -= x[k+1] * 2.0;
}
}
else
{
/* Calculate the corresponding first derivatives */
for (k=0; k<n; k++)
{
for (j=0; j<m; j++)
FJAC(k,j)=0.0;
FJAC(k,k) = 3.0 - x[k] * 4.0;
if (k>0)
FJAC(k,k-1) = -1.0;
if (k<n-1)
3.c05zcc.4 [NP3275/5/pdH]

c05 — Roots of One or More Transcendental Equations

FJAC(k,k+1)= -2.0;

}
8.2. Program Data
None.

8.3. Program Results

c05zcc Example Program Results

The test point is 9.200e-01 1.300e-01 5.400e-01

1st derivatives are consistent with residual values.

At the test point, f() gives
Residuals 1st derivatives
1.807e+00 -6.800e-01 -2.000e+00

-6.438e-01 -1.000e+00 2.480e+00
1.907e+00 0.000e+00 -1.000e+00

0.000e+00
-2.000e+00
8.400e-01

c05zcc

[NP3275/5/pdf]

3.c05zcc.5

